Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Glob Chang Biol ; 30(4): e17227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558300

RESUMO

Methods using genomic information to forecast potential population maladaptation to climate change or new environments are becoming increasingly common, yet the lack of model validation poses serious hurdles toward their incorporation into management and policy. Here, we compare the validation of maladaptation estimates derived from two methods-Gradient Forests (GFoffset) and the risk of non-adaptedness (RONA)-using exome capture pool-seq data from 35 to 39 populations across three conifer taxa: two Douglas-fir varieties and jack pine. We evaluate sensitivity of these algorithms to the source of input loci (markers selected from genotype-environment associations [GEA] or those selected at random). We validate these methods against 2- and 52-year growth and mortality measured in independent transplant experiments. Overall, we find that both methods often better predict transplant performance than climatic or geographic distances. We also find that GFoffset and RONA models are surprisingly not improved using GEA candidates. Even with promising validation results, variation in model projections to future climates makes it difficult to identify the most maladapted populations using either method. Our work advances understanding of the sensitivity and applicability of these approaches, and we discuss recommendations for their future use.


Assuntos
Florestas , Pseudotsuga , Adaptação Fisiológica/genética , Genômica , Mudança Climática
2.
Sci Rep ; 14(1): 3546, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347026

RESUMO

In today's age of ecological transition, the use of materials such as renewable wood in construction is particularly relevant, but also a challenge in the healthcare sector where the hygiene dimension also comes into play. In this study we have investigated the survival of multi-resistant bacteria commonly responsible for healthcare-associated infections (HAIs) (ESBL-positive Klebsiella pneumoniae and glycopeptide-resistant Enterococcus faecalis) on two different types of wood (Douglas fir : Pseudotsuga menziesii and Maritime Pine : Pinus pinaster) compared to other materials (smooth: stainless steel and rough: pumice stone) and the effect of a disinfection protocol on the bacterial survival on Pseudotsuga menziesii. Approximately 108 bacteria were inoculated on each material and bacterial survival was observed over several days (D0, D1, D2, D3, D6, D7 and D15). Each analysis was performed in triplicate for each time and material. The results show an important reduction of the bacterial inoculum for Klebsiella pneumoniae and Enterococcus faecalis on Douglas fir, in contrast with the results obtained on maritime pine, stainless steel and pumice stone. No bacterial survival was detected on Douglas fir after application of a hospital disinfection protocol. These different results show that wood may have a place in the future of healthcare construction. Further studies would be interesting to better understand the different properties of wood.


Assuntos
Pinus , Pseudotsuga , Silicatos , Aço Inoxidável , Bactérias
3.
Phytochemistry ; 219: 113963, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38171409

RESUMO

An investigation on the secondary metabolites from a rice culture broth of the endophytic fungus Neurospora terricola HDF-Br-2 derived from the vulnerable conifer Pseudotsuga gaussenii led to the isolation and characterization of 34 structurally diverse polyketides (1-34). Seven of them are previously undescribed, including five unprecedented dihydropyran-containing (terricoxanthones A-E, 1-5, resp.) and one rare tetrahydrofuran-containing (terricoxanthone F, 6) dimeric xanthones. The structures were elucidated by spectroscopic methods and single-crystal X-ray diffraction analyses. Terricoxanthones each were obtained as a racemic mixture. Their plausible biosynthetic relationships were briefly proposed. Compounds 6, aspergillusone A (8), and alatinone (27) displayed considerable inhibition against Candida albicans with MIC values of 8-16 µg/mL. 4-Hydroxyvertixanthone (12) and 27 exhibited significant inhibitory activities against Staphylococcus aureus, with MIC values of 4-8 µg/mL. Furthermore, compounds 8 and 27 could disrupt biofilm of S. aureus and C. albicans at 128 µg/mL. The findings not only extend the skeletons of xanthone dimers and contribute to the diversity of metabolites of endophytes associated with the endangered Chinese conifer P. gaussenii, but could further reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Assuntos
Neurospora , Pseudotsuga , Traqueófitas , Xantonas , Staphylococcus aureus , Fungos , Xantonas/química , Estrutura Molecular , Testes de Sensibilidade Microbiana
4.
New Phytol ; 241(6): 2395-2409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38247230

RESUMO

Tree seedlings from populations native to drier regions are often assumed to be more drought tolerant than those from wetter provenances. However, intraspecific variation in drought tolerance has not been well-characterized despite being critical for developing climate change mitigation and adaptation strategies, and for predicting the effects of drought on forests. We used a large-scale common garden drought-to-death experiment to assess range-wide variation in drought tolerance, measured by decline of photosynthetic efficiency, growth, and plastic responses to extreme summer drought in seedlings of 73 natural populations of the two main varieties of Douglas-fir (Pseudotsuga menziesii var. menziesii and var. glauca). Local adaptation to drought was weak in var. glauca and nearly absent in menziesii. Var. glauca showed higher tolerance to drought but slower growth than var. menziesii. Clinal variation in drought tolerance and growth species-wide was mainly associated with temperature rather than precipitation. A higher degree of plasticity for growth was observed in var. menziesii in response to extreme drought. Genetic variation for drought tolerance in seedlings within varieties is maintained primarily within populations. Selective breeding within populations may facilitate adaptation to drought more than assisted gene flow.


Assuntos
Secas , Pseudotsuga , Plântula , Florestas , Árvores , Fotossíntese
5.
BMC Genom Data ; 24(1): 69, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986039

RESUMO

OBJECTIVES: Molecular cues linked to heartwood formation open new (complementary) perspectives to genetic breeding programs of Douglas-fir, a tree species largely cultivated in Europe for the natural durability and civil engineering properties of its wood. DATA DESCRIPTION: RNAs from a single genotype of Douglas-fir, extracted from three distinct wood zones (outer sapwood, inner sapwood and transition zone) at four vegetative seasons to generate an extensive RNA-seq dataset used to apprehend the in-wood dynamic and seasonality of heartwood formation in this hardwood model species. Previously published data collected on somatic embryos of the same genotype could be merged with the present dataset to upgrade grade the Douglas-fir reference transcriptome.


Assuntos
Pseudotsuga , Transcriptoma , Transcriptoma/genética , Pseudotsuga/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Madeira/genética
6.
Environ Sci Pollut Res Int ; 30(52): 112357-112367, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831266

RESUMO

Air pollution, a pressing global issue, encompasses various harmful elements, with heavy metals being particularly significant pollutants affecting all forms of life. Effective monitoring and regulation of heavy metal concentrations, especially in the atmosphere, is pivotal. Employing trees as biomonitors emerges as a potent tool, particularly in retrospectively assessing long-term heavy metal contamination trends. This study aims to furnish insights into both tin (Sn) pollutants and the most suitable species for monitoring and mitigating such pollution. Within this study's ambit, samples were collected from Pinus pinaster, Cupressus arizonica, Picea orientalis, Cedrus atlantica, and Pseudotsuga menziesii species in Duzce Province. This area, ranked as the fourth-most air-polluted in Europe according to the World Air Pollution Report, was examined to discern changes in Sn concentration across species, organs, orientations, and age groups over the last four decades. The findings revealed varying potentials for Sn accumulation among the species. Specifically, Pinus pinaster and Picea orientalis were identified as suitable species for monitoring Sn pollution, while Cupressus arizonica, Cedrus atlantica, and Pseudotsuga menziesii exhibited potential for reducing Sn pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Metais Pesados , Picea , Pinus , Pseudotsuga , Estanho , Estudos Retrospectivos , Poluição do Ar/análise , Metais Pesados/análise , Cedrus , Monitoramento Ambiental , Poluentes Atmosféricos/análise
7.
Tree Physiol ; 43(12): 2064-2075, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37672228

RESUMO

Tree-ring δ15N may depict site-specific, long-term patterns in nitrogen (N) dynamics under N2-fixing species, but field trials with N2-fixing tree species are lacking and the relationship of temporal patterns in tree-ring δ15N to soil N dynamics is controversial. We examined whether the tree-ring δ15N of N2-fixing red alder (Alnus rubra Bong.) would mirror N accretion rates and δ15N of soils and whether the influence of alder-fixed N could be observed in the wood of a neighboring conifer. We sampled a 27-year-old replacement series trial on south-eastern Vancouver Island, with red alder and coastal Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) planted in five proportions (0/100, 11/89, 25/75, 50/50 and 100/0) at a uniform stem density. An escalation in forest floor N content was evident with an increasing proportion of red alder, equivalent to a difference of ~750 kg N ha-1 between 100% Douglas-fir versus 100% alder. The forest floor horizon also had high δ15N values in treatments with more red alder. Red alder had a consistent quadratic fit in tree-ring δ15N over time, with a net increase of $\sim$1.5‰, on average, from initial values, followed by a plateau or slight decline. Douglas-fir tree-ring δ15N, in contrast, was largely unchanged over time (in three of four plots) but was significantly higher in the 50/50 mix. The minor differences in current leaf litter N content and δ15N between alder and Douglas-fir, coupled with declining growth in red alder, suggests the plateau or declining trend in alder tree-ring δ15N could coincide with lower N2-fixation rates, potentially by loss in alder vigor at canopy closure, or down-regulation via nitrate availability.


Assuntos
Alnus , Pseudotsuga , Nitrogênio , Árvores/fisiologia , Florestas , Plantas , Pseudotsuga/fisiologia
8.
Molecules ; 28(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687221

RESUMO

The extractive contents of three softwood species largely used in the wood industry, namely Abies alba (Silver fir), Picea abies (spruce) and Pseudotsuga menziesii (Douglas fir), have been determined quantitatively for knots and at different points chosen along their branches, before analysis using high-performance liquid chromatography coupled with Mass Spectrometry (HPLC-MS). The results indicated that branchwood samples located in close proximity to the stem present high contents of extractives similar to those recorded for the knots. HPLC analysis showed quite similar chemical compositions, indicating that first cm of the branches could be considered as an additional source of knotwood. The antibacterial, antifungal and antioxidant activities of knot's extractives have been investigated with the dual objective of better understanding the role of high levels of secondary metabolites present in the knot and evaluating their potential for biorefinery applications. The antioxidant activity study showed that crude extracts of Douglas fir knotwood presented higher radical scavenging activity levels than the extracts of Silver fir and spruce, which presented more or less the same activities. Silver fir and spruce knotwood extracts presented higher antibacterial activity levels than the Douglas fir knotwood extracts did, while Douglas fir knotwood extracts presented more fungal growth inhibition than the spruce and fir knotwood extracts did. The structure-activity relationships indicate that radical scavenging and antifungal activities are associated with a higher relative quantity of flavonoids in the crude extracts, while higher relative quantities of lignans are associated with antibacterial activity.


Assuntos
Picea , Pseudotsuga , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Antibacterianos/farmacologia
9.
Ecol Appl ; 33(8): e2921, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37776039

RESUMO

Averting climate change-induced forest diebacks increasingly relies on tree species planted outside of their natural range and on the addition of non-native tree species to mixed-species forests. However, the consequences of such changes for associated biodiversity remain poorly understood, especially for the forest canopy as a largely understudied forest stratum. Here, we used flight interception traps and a metabarcoding approach to study the taxonomic and functional (trophic guilds) composition and taxon richness of canopy arthropods. We sampled 15 monospecific and mixed stands of native European beech, native Norway spruce-planted outside its natural range-and non-native Douglas fir in northwest Germany. We found that the diversity of arthropods was lower in non-native Douglas fir compared with native beech stands. Taxon richness of herbivores was reduced by both conifer species. Other functional guilds, however, were not affected by stand type. Arthropod composition differed strongly between native broadleaved beech and monospecific coniferous (native spruce or non-native Douglas fir) stands, with less pronounced differences between the native and non-native conifers. Beech-conifer mixtures consistently hosted intermediate arthropod diversity and community composition compared with the respective monospecific stands. Moreover, arthropod diversity had a positive relationship with the number of canopy microhabitats. Our study shows that considering arthropod taxa of multiple functional groups reveals the multifaceted impact of non-native tree species on forest canopy arthropod communities. Contrasting with previous studies that primarily focused on the forest floor, we found that native beech hosts a rich diversity of arthropods, compared with lower diversity and distinct communities in economically attractive, and especially in non-native, conifers with few canopy microhabitats. Broadleaf-conifer mixtures did not perform better than native beech stands, but mitigated the negative effects of conifers, making such mixtures a compromise to foster both forest-associated diversity and economic yield.


Assuntos
Artrópodes , Fagus , Picea , Pseudotsuga , Traqueófitas , Animais , Biodiversidade , Alemanha , Herbivoria
10.
Biomolecules ; 13(9)2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37759800

RESUMO

The Douglas fir (Pseudotsuga menziesii) is a conifer native to North America that has become increasingly popular in plantations in France due to its many advantages as timber: rapid growth, quality wood, and good adaptation to climate change. Tree genetic improvement programs require knowledge of a species' genetic structure and history and the development of genetic markers. The very slow progress in this field, for Douglas fir as well as the entire genus Pinus, can be explained using the very large size of their genomes, as well as by the presence of numerous highly repeated sequences. Proteomics, therefore, provides a powerful way to access genomic information of otherwise challenging species. Here, we present the first Douglas fir proteomes acquired using nLC-MS/MS from 12 different plant organs or tissues. We identified 3975 different proteins and quantified 3462 of them, then examined the distribution of specific proteins across plant organs/tissues and their implications in various molecular processes. As the first large proteomic study of a resinous tree species with organ-specific profiling, this short note provides an important foundation for future genomic annotations of conifers and other trees.


Assuntos
Pseudotsuga , Traqueófitas , Proteoma/genética , Pseudotsuga/genética , Proteômica , Espectrometria de Massas em Tandem , Mudança Climática
11.
Environ Pollut ; 336: 122477, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652225

RESUMO

In rural areas, nitrate concentrations in surface waters most often originate from the leaching of excess N fertilizer in agricultural lands, whereas forested catchments often have good water quality. However, Douglas-fir plantations may induce nitrogen cycle unbalances which may lead to an excess of nitrate production in the soil. We hypothesize that the excess of production of nitrate in the soil and nitrate leaching to streamwater is greater in catchments planted with Douglas fir. We used paired catchments in both France and Luxembourg with different land covers (Douglas-fir, Spruce, Deciduous, Grassland and clearcut) which were monitored over a 3-5 year period in order to assess the effect of Douglas-fir plantations on the chemical composition of surface water. Nitrate concentration in the soil and groundwater were also monitored. The results show that nitrate concentrations in streams draining Douglas-fir catchments were two to ten times higher than in streams draining other land covers, but were similar to the clearcut catchment. Nitrate concentrations under Douglas-fir in groundwater (up to 50 mg L-1) and in the soil were also higher than under all other land covers. Soil nitrate concentration was related to stream nitrate concentration. This suggests that soil processes, through excessive nitrate production under Douglas-fir, are driving the nitrate concentration in the stream water and our hypothesis of a transfer of a fairly large proportion of this excessive production from the soil to the stream is supported. This study also shows that nitrate concentrations in surface and ground waters in rural areas could also originate from Douglas fir forested catchments. The impact of Douglas-fir is nevertheless reduced downstream through a dilution effect: mixing tree species at the catchment scale could thus be a solution to mitigate the effect of Douglas-fir on nitrate concentration in surface waters.


Assuntos
Água Subterrânea , Pseudotsuga , Nitratos/análise , Luxemburgo , Monitoramento Ambiental , Solo , Europa (Continente) , França
12.
J Nat Prod ; 86(5): 1251-1260, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37196240

RESUMO

Seven [4 + 2]-type triterpene-diterpene hybrids derived from a rearranged or a normal lanostane unit (dienophile) and an abietane moiety (diene), forrestiacids E-K (1-7, respectively), were further isolated and characterized from Pseudotsuga forrestii (a vulnerable conifer endemic to China). The intriguing molecules were revealed with the guidance of an LC-MS/MS-based molecular ion networking strategy combined with conventional phytochemical procedures. Their chemical structures with absolute configurations were established by spectroscopic data, chemical transformation, electronic circular dichroism calculations, and single-crystal X-ray diffraction analysis. They all contain a rare bicyclo[2.2.2]octene motif. Both forrestiacids J (6) and K (7) represent the first examples of this unique class of [4 + 2]-type hybrids that arose from a normal lanostane-type dienophile. Some isolates remarkably inhibited ATP-citrate lyase (ACL), with IC50 values ranging from 1.8 to 11 µM. Docking studies corroborated the findings by highlighting the interactions between the bioactive compounds and the ACL enzyme (binding affinities: -9.9 to -10.7 kcal/mol). The above findings reveal the important role of protecting plant species diversity in support of chemical diversity and potential sources of new therapeutics.


Assuntos
Diterpenos , Pseudotsuga , Traqueófitas , Triterpenos , Triterpenos/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Diterpenos/química , Estrutura Molecular
13.
Phytochemistry ; 211: 113687, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105348

RESUMO

Four undescribed palmarumycin-type spirodioxynaphthalenes (phyligustricins A-D) and a known biogenetic precursor (palmarumycin BG1) were isolated from a solid fermentation of Phyllosticta ligustricola HDF-L-2, an endophyte associated with the endangered Chinese conifer Pseudotsuga gaussenii. The structures were elucidated by spectroscopic methods, single-crystal X-ray diffraction analyses, and electronic circular dichroism calculations. Both phyligustricins A and B have an unprecedented spirodioxynaphthalene-derived skeleton containing an extra 4H-furo [3,2-c]pyran-4-one moiety, while phyligustricins C and D are p-hydroxy-phenethyl substituted spirodioxynaphthalenes. The plausible biosynthetic relationships of the isolates were briefly proposed. Phyligustricins C and D and palmarumycin BG1 showed considerable antibacterial activity against Staphylococcus aureus, each with an MIC value of 16 µg/mL. Palmarumycin BG1 displayed significant inhibitory effects against ACL and ACC1, with IC50 values of 1.60 and 8.00 µM, respectively.


Assuntos
Ascomicetos , Pseudotsuga , Ascomicetos/química , Antibacterianos/farmacologia , Antibacterianos/química
14.
Tree Physiol ; 43(8): 1365-1382, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37073477

RESUMO

Fire is a major cause of tree injury and mortality worldwide, yet our current understanding of fire effects is largely based on ocular estimates of stem charring and foliage discoloration, which are error prone and provide little information on underlying tree function. Accurate quantification of physiological performance is a research and forest management need, given that declining performance could help identify mechanisms of-and serve as an early warning sign for-mortality. Many previous efforts have been hampered by the inability to quantify the heat flux that a tree experiences during a fire, given its highly variable nature in space and time. In this study, we used a dose-response approach to elucidate fire impacts by subjecting Pinus monticola var. minima Lemmon and Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco saplings to surface fires of varying intensity doses and measuring short-term post-fire physiological performance in photosynthetic rate and chlorophyll fluorescence. We also evaluated the ability of spectral reflectance indices to quantify change in physiological performance at the individual tree crown and stand scales. Although physiological performance in both P. monticola and P. menziesii declined with increasing fire intensity, P. monticola maintained a greater photosynthetic rate and higher chlorophyll fluorescence at higher doses, for longer after the fire. Pinus monticola also had complete survival at lower fire intensity doses, whereas P. menziesii had some mortality at all doses, implying higher fire resistance for P. monticola at this life stage. Generally, individual-scale spectral indices were more accurate at quantifying physiological performance than those acquired at the stand-scale. The Photochemical Reflectance Index outperformed other indices at quantifying photosynthesis and chlorophyll fluorescence, highlighting its potential use to quantify crown scale physiological performance. Spectral indices that incorporated near-infrared and shortwave infrared reflectance, such as the Normalized Burn Ratio, were accurate at characterizing stand-scale mortality. The results from this study were included in a conifer cross-comparison using physiology and mortality data from other dose-response studies. The comparison highlights the close evolutionary relationship between fire and species within the Pinus genus, assessed to date, given the high survivorship of Pinus species at lower fire intensities versus other conifers.


Assuntos
Pinus , Pseudotsuga , Traqueófitas , Evolução Biológica , Cycadopsida , Árvores , Clorofila
15.
Molecules ; 28(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985451

RESUMO

Conifers are of great economic value in terms of lumber production, important for construction and other uses such as pulp and paper. They are also important sources of essential oils. Conifer species have been vital to the ethnobotany and traditional herbal medicine of many different Native American groups. The objective of this work was to obtain and analyze the essential oils of several conifer species (Abies lasiocarpa, Picea engelmannii, Pinus contorta, Pseudotsuga menziesii, and Thuja plicata) growing in Idaho. The foliar essential oils were obtained by hydrodistillation and then analyzed by gas chromatographic methods, including GC-MS, GC-FID, and chiral GC-MS. The essential oils were obtained in varying yields from 0.66% up to 4.70%. The essential oil compositions were largely dominated by monoterpene hydrocarbons and oxygenated monoterpenoids. The chiral monoterpenoids were generally rich in the (-)-enantiomers for members of the Pinaceae, but the (+)-enantiomers predominated in the Cupressaceae. The essential oil compositions obtained in this work are qualitatively similar, but quantitatively different, to previously reported compositions and confirm and complement the previous reports. However, this is the first comprehensive analysis of the chiral terpenoid components in these conifer species. Additional research on essential oils of the Pinaceae and Cupressaceae is needed to describe the chemical profiles, chemical compositions, and enantiomeric distributions more reliably in the various species and infraspecific taxa of these two families.


Assuntos
Abies , Óleos Voláteis , Picea , Pinus , Pseudotsuga , Thuja , Humanos , Picea/química , Cycadopsida , Idaho , Monoterpenos
16.
BMC Ecol Evol ; 23(1): 3, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737705

RESUMO

BACKGROUND: Functional diversity is vital for forest ecosystem resilience in times of climate-induced forest diebacks. Admixing drought resistant non-native Douglas fir, as a partial replacement of climate-sensitive Norway spruce, to native beech forests in Europe appears promising for forest management, but possible consequences for associated biota and ecosystem functioning are poorly understood. To better link forest management and functional diversity of associated biota, we investigated the trophic niches (∆13C, ∆15N) of epigeic generalist predators (spiders and ground beetles) in mixed and pure stands of European beech, Norway spruce and non-native Douglas fir in north-west Germany. We assessed the multidimensional niche structure of arthropod predator communities using community-based isotopic metrics. RESULTS: Whilst arthropod ∆13C differed most between beech (high ∆13C) and coniferous stands (low ∆13C), ∆15N was lowest in non-native Douglas fir. Tree mixtures mitigated these effects. Further, conifers increased isotopic ranges and isotopic richness, which is linked to higher canopy openness and herb complexity. Isotopic divergence of ground beetles decreased with Douglas fir presence, and isotopic evenness of spiders in Douglas fir stands was lower in loamy sites with higher precipitation than in sandy, drier sites. CONCLUSIONS: We conclude that tree species and particularly non-native trees alter the trophic niche structure of generalist arthropod predators. Resource use and feeding niche breadth in non-native Douglas fir and native spruce differed significantly from native beech, with more decomposer-fueled and narrower feeding niches in beech stands (∆13C, isotopic ranges and richness). Arthropod predators in non-native Douglas fir, however, had shorter (∆15N) and simplified (isotopic divergence) food chains compared to native forest stands; especially under beneficial abiotic conditions (isotopic evenness). These findings indicate potential adverse effects of Douglas fir on functional diversity of generalist arthropod predators. As tree mixtures mitigated differences between beech and conifers, mixed stands including (non-native) conifers constitute a promising compromise between economic and conservational interests.


Assuntos
Artrópodes , Besouros , Fagus , Picea , Pseudotsuga , Aranhas , Animais , Árvores , Ecossistema , Florestas
17.
Sci Total Environ ; 854: 158703, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36099953

RESUMO

Severe drought events negatively affect tree growth and often cause legacy effects, expressed by smaller tree rings in the post-drought recovery years. While the pattern of reduced tree-ring widths is frequently described the processes underlying such legacy effects, i.e., whether it is due to shorter growth periods or lower growth rates, remains unclear and is investigated in this study. To elucidate these post-drought effects, we examined radial stem growth dynamics monitored with precision band-dendrometers on 144 Douglas fir, Norway spruce and silver fir sample trees distributed along four elevational gradients in the Black Forest (Southwest Germany) during the post-drought years 2019 and 2020. Growth onset of all investigated species occurred between 11 and 24 days significantly earlier in 2020 compared to 2019. Modelling growth onset based on chilling and forcing units and taking the study year into account explained 88-98 % of the variance in the growth onset data. The highly significant effect of the study year (p < 0.001) led to the conclusion, that other factors than the prevailing site conditions (chilling and forcing units) must have triggered the earlier growth onset in 2020. On the other hand, for Douglas fir growth rates were significantly higher in 2020 compared to 2019 (2.9 µm d-1) and marginally significantly higher for silver fir (1.3 µm d-1), underlining the explanatory power of growth rate on recovery processes in general and suggesting that Douglas fir copes better with droughts, as it recovered faster. Growth dynamics at the beginning of the year showed limited growth for earlier growth onsets, which, however, could not explain the difference between the investigated years. Our results provide evidence that legacy effects of drought events are expressed by a delayed growth onset and a reduced growth rate in the post-drought year and that Douglas fir has a superior recovery potential.


Assuntos
Abies , Picea , Pseudotsuga , Traqueófitas , Secas , Florestas
18.
Ecol Appl ; 33(2): e2760, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36218008

RESUMO

A key uncertainty of empirical models of post-fire tree mortality is understanding the drivers of elevated post-fire mortality several years following fire, known as delayed mortality. Delayed mortality can represent a substantial fraction of mortality, particularly for large trees that are a conservation focus in western US coniferous forests. Current post-fire tree mortality models have undergone limited evaluation of how injury level and time since fire interact to influence model accuracy and predictor variable importance. Less severe injuries potentially serve as an indicator for vulnerability to additional stressors such as bark beetle attack or moisture stress. We used a collection of 164,293 individual tree records to examine post-fire tree mortality in eight western USA conifers: Abies concolor, Abies grandis, Calocedrus decurrens, Larix occidentalis, Pinus contorta, Pinus lambertiana, Pinus ponderosa, and Pseudotsuga menziesii. We evaluated the importance of fire injury predictors on discriminating between surviving trees versus immediate and delayed post-fire mortality. We fit balanced random forest models for each species using cumulative tree mortality from 1 to 5-years post-fire. We compared these results to multi-class random forest models using first-year mortality, 2-5-year mortality, and survival 5-years post-fire as a response variable. Crown volume scorched, diameter at breast height, and relative bark char height, were used as predictor variables. The cumulative mortality models all predicted trees that died within 1-year of fire with high accuracy but failed to predict 2-5-year mortality. The multi-class models were an improvement but had lower accuracy for predicting 2-5-year mortality. Multi-class model accuracies ranged from 85% to 95% across all species for predicting 1-year post-fire mortality, 42%-71% for predicting 2-5-year mortality, and 64%-85% for predicting trees that lived past 5-years. Our study highlights the differences in tree species tolerance to fire injury and suggests that including second-order predictors such as beetle attack or climatic water stress before and after fire will be critical to improve accuracy and better understand the mechanisms and patterns of fire-caused tree death. Random forest models have potential for management applications such as post-fire harvesting and simulating future stand dynamics.


Assuntos
Besouros , Incêndios , Pinus , Pseudotsuga , Animais , Pinus ponderosa/fisiologia , Besouros/fisiologia , Pseudotsuga/fisiologia
19.
Ecol Appl ; 33(2): e2786, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36477972

RESUMO

Recent ecological research suggests that, in general, mixtures are more resistant to insect herbivores and pathogens than monocultures. However, we know little about mixtures with non-native trees, where enemy release could lead to patterns that differ from commonly observed relationships among native species. This becomes particularly relevant when considering that adaptation strategies to climate change increasingly promote a larger share of non-native tree species, such as North American Douglas fir in Central Europe. We studied leaf damage on European beech (Fagus sylvatica) saplings and mature trees across a wide range of site conditions in monocultures and mixtures with phylogenetically distant conifers native Norway spruce (Picea abies) and non-native Douglas fir (Pseudotsuga menziesii). We analyzed leaf herbivory and pathogen damage in relation to tree diversity and composition effects, as well as effects of environmental factors and plant characteristics. We observed lower sapling herbivory and tree sucking damage on beech in non-native Douglas fir mixtures than in beech monocultures, probably due to a lower herbivore diversity on Douglas fir trees, and higher pathogen damage on beech saplings in Norway spruce than Douglas fir mixtures, possibly because of higher canopy openness. Our findings suggest that for low diversity gradients, tree diversity effects on leaf damage can strongly depend on tree species composition, in addition to modifications caused by feeding guild and tree ontogeny. Moreover, we found that nutrient capacity modulated the effects of tree diversity, composition, and environmental factors, with different responses in sites with low or high nutrient capacity. The existence of contrasting diversity effects based on tree species composition provides important information on our understanding of the relationships between tree diversity and plant-herbivore interactions in light of non-native tree species introductions. Especially with recent Norway spruce die-off, the planting of Douglas fir as replacement is likely to strongly increase in Central Europe. Our findings suggest that mixtures with Douglas fir could benefit the survival or growth rates of beech saplings and mature trees due to lower leaf damage, emphasizing the need to clearly identify and compare the potential benefits and ecological trade-offs of non-native tree species in forest management under ongoing environmental change.


Assuntos
Fagus , Picea , Pseudotsuga , Árvores/fisiologia , Fagus/fisiologia , Pseudotsuga/fisiologia , Florestas , Picea/fisiologia , Folhas de Planta/fisiologia
20.
Sci Total Environ ; 861: 160609, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36470384

RESUMO

While mounting evidence suggests that wildland fire smoke (WFS) inhalation may increase the burden of cardiopulmonary disease, the occupational risk of repeated exposure during wildland firefighting remains unknown. To address this concern, we evaluated the cardiopulmonary function in mice following a cumulative exposure to lab-scale WFS equivalent to a mid-length wildland firefighter (WLFF) career. Dosimetry analysis indicated that 80 exposure hours at a particulate concentration of 22 mg/m3 yield in mice the same cumulative deposited mass per unit of lung surface area as 3600 h of wildland firefighting. To satisfy this condition, male Apoe-/- mice were whole-body exposed to either air or smoldering Douglas fir smoke (DFS) for 2 h/day, 5 days/week, over 8 consecutive weeks. Particulate size in DFS fell within the respirable range for both mice and humans, with a count median diameter of 110 ± 20 nm. Expiratory breath hold in mice exposed to DFS significantly reduced their minute volume (DFS: 27 ± 4; Air: 122 ± 8 mL/min). By the end of the exposure time frame, mice in the DFS group exhibited a thicker (DFS: 109 ± 3; Air: 98 ± 3 µm) and less distensible (DFS: 23 ± 1; Air: 28 ± 1 MPa-1) aorta with reduced diastolic blood augmentation capacity (DFS: 53 ± 2; Air: 63 ± 2 kPa). Cardiac magnetic resonance imaging further revealed larger end-systolic volume (DFS: 14.6 ± 1.1; Air: 9.9 ± 0.9 µL) and reduced ejection-fraction (DFS: 64.7 ± 1.0; Air: 75.3 ± 0.9 %) in mice exposed to DFS. Consistent with increased airway epithelium thickness (DFS: 10.4 ± 0.8; Air: 7.6 ± 0.3 µm), airway Newtonian resistance was larger following DFS exposure (DFS: 0.23 ± 0.03; Air: 0.20 ± 0.03 cmH2O-s/mL). Furthermore, parenchyma mean linear intercept (DFS: 36.3 ± 0.8; Air: 33.3 ± 0.8 µm) and tissue thickness (DFS: 10.1 ± 0.5; Air: 7.4 ± 0.7 µm) were larger in DFS mice. Collectively, mice exposed to DFS manifested early signs of cardiopulmonary dysfunction aligned with self-reported events in mid-career WLFFs.


Assuntos
Pseudotsuga , Animais , Masculino , Camundongos , Aorta , Poeira , Exposição por Inalação/análise , Pulmão , Fumaça/efeitos adversos , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...